Application Note

UV-V Sensor (Peak Responsivity : 355nm, Detection Range : 230nm~395nm)

Abstract

UV-V Sensor is Indium Gallium Nitride-based materials with Schottky Photodiode. UV-V sensors detect a UVV wavelength(230nm~395nm) and used in UVV lamp monitoring.

- 1. Package Type
 The durability of the package should be good in order to detect UVV wavelength.
- According to the package type, UV sensors can be used selectively with applications.

Fig. 2 Viewing angle in accordance with the package type

2. Type of UV chips

- The larger the chip size the higher output value(Photo current).

Output Value	Standard Chip	Large Chip		
Picture of UV chip				
Chip Size (m)	0.4 × 0.4	1.4 × 1.4		
Active area (m/)	0.076	1.536		
Photo current	163nA	2.6µA		
	※ Optical source : 1mW/m², 352nm UVA Lamp			
Fig. 3 Type of UV chips				

3. Dark current

- The small electric current that flows through UV sensor when no photons are entering the device.

Peak Wavelength(nr 355 355 Spectral Det 250~39 230~395 Material of windo Quartz glas

The reason of difference of responsivity curve and detection area is the difference in material window of UV sensors

5. Classification by output value

UV Sensor output values have two ways, as current or voltage for the UV response. GH series are voltage output component, and the Op-Amp is mounted therein.

Output va Model oltage Output nt Outpu SD, GD series (SMD, TO-CAN PKG) GH series Amplified Voltage Output Feature Current Output SMD PKG ₩ Direction of electrode and COB PKG Pin information -S * TO-CAN 🐼)= 🧶 = . Structure Chip UV sensor of Chip Case PCB UV sensor of Case voltage output current output Fig. 6 Classification by output value

6. Application circuit

Fig. 7 Application circuit

Part No.	Model and Value	Function	Remark
UV Sensor	nsor UVV Sensor UV Sensing		Anode connects to ground
Op-Amp	MCP6241 (Vcc = 1.8 ~5.5V) LMC6081 (Vcc = 4.5 ~ 15V) OPA237 (Vcc = 2.7 ~36V)	Amplification	Input Offset Current < 1nA
Capacitor (C1)	lnA	Decreasing input noise	Decrease the value for fast response (e.g. 100pF) Increase the value for reducing errors (e.g. 10nF)
Capacitor (C2)	0.1µF	Stabilization of power	Internal voltage of capacitor > Vcc
Resister (R1, 2, 3)	R1=0kΩ, R2=X, R3=6.8MΩ	Decide the output voltage	Gain : R3 × (1+R1/R2)

7 Application of the UV lamps

Internal pressure	Type of lamp	Applications	Available product	
Low Pressure UV	Cleaning Lamp	Surface cleaning (LCD, PDP, OLED, Optic glass, Lead frame, acrylic)	All LIVA/ Concorr	
Lamp	Organic matter decomposition Lamp	decomposing TOC and COD in water	All UVV Sensors	
(Under 1kg/m')	sterilization UV Lamp	Sterilizing water and air		
Middle	Medium Pressure Mercury Lamp	Coating, Ink curing		
Pressure UV	Iron Iodide Metal Halide Lamp	Coating, Ink and adhesive curing	TO-CAN Package Type UVV Sensors (Using Diffuser)	
Lamp (2~3kg/cm [*])	Ga Iodide Metal Halide Lamp	Film processing, Shadow mask, etching		
High Pressure UV Lamp (Under 5~10kg/œ')	Short Arc High Pressure Mercury Xe Lamp	Spot UV analysor, UV stepper		

8. Products Table

OUTPUT	Model No.	PKG Type	Chip Size (mr)	The minimum detectable quantity of light	Output Value*
Current	GUVV-C20SD	COB 2418		0.1µW/m²	181nA
	GUVV-S10SD	SMD 3528	0.4×0.4		
	GUVV-T10GD	TO-46			163nA
	GUVV-T10GD-L	TO-46	1.4×1.4	0.01µW/cm²	2.6µA
Voltage	GUVV-T21GH	TO-5	0.4 × 0.4	0.1 <i>µ</i> W/cm²	1.55V

* Optical source power : 1#W/m², 352nm UVA Lamp

** The maximum detectable quantity of light : 100mW/m' (Please contact us when optical source power is over 100mW/m'.)

9. Caution

1) ESD (Electro-Static Discharge)

- ESD and surge voltage can cause damage to UV sensor. - It is recommended that using antistatic wrist strap or antistatic gloves when handing the UV sensors.

2) Preventing moisture penetration

- If moisture is absorbed into the inside of the device, occur expansion and vaporization during the soldering process. This phenomenon can give damaged to optical properties and appearance of UV sensors. - UV sensors are packaged in aluminium moisture barrier bags and put in silica gel.

3) Etc.

- If not insulated the cap of TO-CAN package type, it's cause malfunction to the device.
- Storage conditions : Temperature 5-30°C, please keeping the condition of moisture is less than RH 65%. Soldering Conditions : Max. 260°C (Temperature), Max. 10sec. (Time)