Application Note

UV-A Sensor (Peak Responsivity: 355nm, Detection Range: 220nm~370nm)

UV-A Sensor is Gallium Nitride-based materials with Schottky Photodiode.

UV-A sensors detect a UVA wavelength(220nm~370nm) and used in UVA lamp monitoring. UV-A sensors detect UV Index under sun light.

1. Package Type

- The durability of the package should be good in order to detect UVA wavelength.
- According to the package type, UV sensors can be used selectively with applications

Package Type	Picture of products	Detection Range	Viewing angle(°)	Applications
COB 2418		240nm~370nm	120	Compact equipment, mobile phone, wide Viewing angle sensing
SMD 3528	(240111114-37011111	100	
TO-46	100		60	Metal material of TO-CAN type and general applications
TO-39	0	220nm~370nm	60	
TO-5			100	

Fig. 1 Package Typ

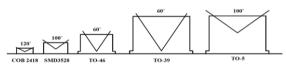


Fig. 2 Viewing angle in accordance with the package type

2. Type of UV chips
- The larger the chip size the higher output value(Photo current).

Output Value	Standard Chip	Large Chip	Ultra Large Chip	
Picture of UV chip				
Chip Size (mm')	0.4 × 0.4	1.4 × 1.4	3.4 × 3.4	
Active area (mm')	0.076	1.536	6.894	
Photo current	161nA 3.1μA 15.6μA		15.6μA	
Photo current	※ Optical source : 1mW/σm², 352nm UVC Lamp			

Fig. 3 Type of UV chips

3. Dark current

The small electric current that flows through UV sensor when no photons are entering the device.

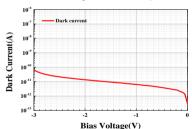


Fig. 4 Dark current of UVA sensor (Log scale)

Parameter	Max.	Unit	Test Conditions
Dark current	1	nA	Vr = 0.1V

4. Responsivity

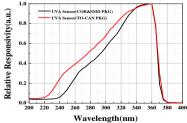


Fig. 5 Relative Responsivity

Parameter	COB & SMD PKG	TO CAN PKG
Peak Wavelength(nm)	355	355
Spectral Detection Range(nm)	240~370	220~370
Material of window	Si	Quartz glass

- The reason of difference of responsivity curve and detection area is the difference in material window of UV sensors.

5. Classification by output value

- UV Sensor output values have two ways, as current or voltage for the UV response.
- GH series are voltage output component, and the Op-Amp is mounted therein.

Output value	C	Current Output	Voltage Output	
Model	SD, GD ser	ries (SMD, TO-CAN PKG)	GH series	
Feature	(Current Output	Amplified Voltage Output	
	SMD PKG	Andréi - Cathalaire	(Voc)	
Direction of electrode and Pin information	COB PKG	Andrew Cathalore	(Vout) (GND)	
	TO-CAN	Anode Parising Cathode	5.1±0.2 8.1±0.20 9.1±0.20	
Structure	+	= =	+ + + = +	
	Chip	Case UV sensor of current output	Chip Case PCB UV sensor of voltage output	

Fig. 6 Classification by output value

6. Application circuit

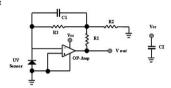


Fig. 7 Application circuit

Part No. Model and Value		Function	Remark	
UV Sensor	UVA Sensor	UV Sensing	Anode connects to ground	
Op-Amp	MCP6241 (Vcc = 1.8 ~5.5V) LMC6081 (Vcc = 4.5 ~ 15V) OPA237 (Vcc = 2.7 ~36V)	Amplification	Input Offset Current < 1nA	
Capacitor (C1)	1nA	Decreasing input noise	Decrease the value for fast response (e.g. 100pF) Increase the value for reducing errors (e.g. 10nF)	
Capacitor (C2) 0.1 µF		Stabilization of power	Internal voltage of capacitor > Vcc	
Resister (R1, 2, 3) R1=0Ω, R2=X, R3=6.8MΩ		Decide the output voltage	Gain: R3 × (1+R1/R2)	

7 Application of the UV lamps

Internal pressure	Type of lamp	Applications	Available product	
Low	Cleaning Lamp	Surface cleaning (LCD, PDP, OLED,		
Pressure UV	3	Optic glass, Lead frame, acrylic)	All UVA Sensors	
Lamp	Organic matter decomposition Lamp	decomposing TOC and COD in water	7111 0 471 3013013	
(Under 1kg/m')	sterilization UV Lamp	Sterilizing water and air		
Middle	Medium Pressure Mercury Lamp	Coating, Ink curing		
Pressure UV	Iron Iodide Metal Halide Lamp	Coating, Ink and adhesive curing		
Lamp	Ga Iodide Metal Halide Lamp	Film processing,	TO-CAN Package Type	
(2~3 kg/cm')	Ga lodide Metal Halide Lamp	Shadow mask, etching	UVA Sensors	
High Pressure UV Lamp (Under 5~10kg/m')	Short Arc High Pressure Mercury Xe Lamp	Spot UV analysor, UV stepper	(Using Diffuser)	

8. Products Table

OUTPUT	Model No.	PKG Type	Chip Size	The minimum detectable quantity of light	Output Value**
Current	GUVA-C22SD	COB 2418	0.4 × 0.4	0.1μW/cm²	113nA
	GUVA-S12SD	SMD 3528			
	GUVA-T11GD	TO-46			161nA
	GUVA-T13GD*	TO-46			
	GUVA-T31GD	TO-46 (3 Leads)			
	GUVA-T11GD-L	TO-46	1.4 × 1.4	0.01µW/cm²	3.1µA
	GUVA-T21GD-U	TO-39	3.4 × 3.4	0.001µW/cm²	15.6µA
Voltage	GUVA-T21GH	TO-5	0.4 × 0.4	0.1µW/cm²	1.88V

- * GUVA-T13GD and GUVA-T11GD are same package type. But direction of electrode is opposite.
- ** Optical source power : 1mW/cm², 352nm UVA Lamp
- *** The maximum detectable quantity of light : 100 mW/m' (Please contact us when optical source power is over 100 mW/m'.)

9. Caution

- 1) ESD (Electro-Static Discharge)
- ESD and surge voltage can cause damage to UV sensor.
- It is recommended that using antistatic wrist strap or antistatic gloves when handing the UV sensors.
- If moisture is absorbed into the inside of the device, occur expansion and vaporization during
- the soldering process. This phenomenon can give damaged to optical properties and appearance of UV sensors.
- UV sensors are packaged in aluminium moisture barrier bags and put in silica gel.

- If not insulated the cap of TO-CAN package type, it's cause malfunction to the device.
- Storage conditions: Temperature 5~30°C, please keeping the condition of moisture is less than RH 65%.
- Soldering Conditions : Max. 260°C (Temperature), Max. 10sec. (Time)